
This paper describes a knowledge-based approach to
automate CODARTS, a software design method for
concurrent and real-time systems.  The approach uses
multiple paradigms to represent knowledge embedded
within CODARTS.  Semantic data modeling provides the
means to model specifications and related designs.  A
specification meta-model enables automated inferences
about the presence of semantic concepts within a
specification, while a design meta-model permits
automated reasoning concerning concurrent designs.
Production rules form the basis for modeling a set of
heuristics that can generate concurrent designs based
upon semantic concepts from the specification and
design meta-models.  Together, the  semantic data
models and production rules, encoded using an
expert-system shell, compose CODA, an automated
designer’s assistant.  CODA is applied to generate ten
concurrent designs for four real-time problems.

1.0 Introduction

Software engineering researchers and practitioners
strive to improve the quality of software products by
increasing the discipline used during software
development.  One means of increasing discipline entails
the development and application of software design
methods.  Some researchers attempt to enhance the
utility of software design methods by providing
automated support.  To date, such attempts rely upon
either of two approaches: clustering algorithms or
rule-based expert systems.  Richer knowledge
engineering models, integrating semantic data modeling
with production rules, can potentially lead to more
effective automation of software design methods.  This
paper describes one approach to automating a software
design method by using multiple paradigms to represent
the knowledge embedded in the method.

After discussing some existing approaches to
automate software design methods, this paper describes
CODARTS (COncurrent Design Approach for
Real-Time Systems), a software design method for
concurrent and real-time systems [1], and then proposes
a knowledge-based approach to automate CODARTS.   
The proposed approach leads directly to CODA

(COncurrent Designers Assistant), an automated designer’s
assistant.  The paper describes the use of CODA to generate
ten concurrent designs for four real-time problems, and then
compares CODA to other approaches that automate software
design methods.

2.0  Automating Software Design Methods

A software design method provides a methodical,
consistent, and teachable approach that defines what
decisions a designer needs to make, when to make them, and,
importantly, when to stop making decisions. [2] In addition,
a software design method provides a consistent notation that
can improve communication among those who must review
and understand the meaning of a design.  In effect, a software
design method encodes knowledge about good design
practices into a form that designers can use to manually
construct software designs.

Providing automated support for software design
methods can lead to several benefits.   First, automation can
improve the rigor with which a software design method is
applied.  Automation can ensure that a designer does not
overlook any of the myriad details associated with the design
process.  Automation can establish that constraints levied on
a design are satisfied, or that any unsatisfied constraints are
brought to the designer's attention.  Second, automation can
improve a designer's ability to generate alternate designs.
Since automation can speed up the generation of designs
without sacrificing rigor, a designer can more readily
produce several designs from one specification.   Third,
automation can reduce the variability among the types of
designs generated by various designers.  Reduced variability
of form can increase the ability of customers, analysts, and
programmers to understand designs.  Fourth, automation can
improve the performance of inexperienced designers both
immediately, by making default decisions, and gradually, by
explaining default design decisions to the designer. 

A number of researchers propose approaches to
automate software design methods.  Four such approaches
are described in this section.  Three of the four approaches
produce a sequential design, represented as structure charts,
from a specification represented by data flow diagrams
(DFDs).  One such approach, CAPO (Computer-Aided
Process Organization) [3], relies upon various clustering
algorithms to group transformations from a DFD into
modules based upon numeric values and weights assigned to
represent the amount and frequency of data flow between the
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transformations.  The second approach, STES
(Specification-Transformation Expert System) [4],
produces structure charts from a DFD by representing
the Structured Design method of Yourdon and
Constantine [5] as a set of expert-system rules, encoded
using an expert-system shell.  The third approach [6]
uses an entity aggregate relationship attribute model to
formally describe a DFD and a structure chart, and then
defines transformation rules, based upon set theory, to
convert a formal description of a DFD into a formal
description of a structure chart.  As with STES, the
transformation rules implement the Structured Design
method.

A fourth approach automates the generation of
concurrent designs for SARA (the System ARchitects
Apprentice). [7]  The SARA Design Assistant
encompasses expert-system rules that examine two
separate specifications: system verification diagrams, or
SVDs, and a related DFD.  Each SVD can use constructs
representing sequence, three forms of selection
(exclusive-or, sequential-inclusive-or, and
sequential-exlcusive-or), and parallelism to restrict the
concurrency possible among the transformations on a
related DFD.  The expert-system rules defined for the
SARA Design Assistant map elements from a DFD onto
constructs contained within the SARA design simulator.

3.0  An Overview Of CODARTS

While the SARA Design Assistant constructs a
concurrent design from two separate, but related,
specifications, CODARTS [1] uses criteria for
information hiding and task structuring to form a
concurrent design, including both tasks and information
hiding modules [8], from a single specification.
CODARTS begins by using COBRA (Concurrent
Object-Based Real-time Analysis) to analyze and model
a system under design.  COBRA, while using RTSA
(Real-Time Structured Analysis) notation, provides an
alternative to the RTSA [9,10] decomposition strategy
that includes guidelines for developing an environmental
model based on the system context diagram, and defines
structuring criteria for decomposing a system into
subsystems, and for determining objects and functions
within each subsystem.  Finally, COBRA includes a
behavioral approach, based on event sequencing
scenarios, for determining how the objects and functions
within a subsystem interact.  A COBRA specification is
documented as a hierarchical data/control flow diagram
(D/CFD), with a state-transition diagram for each control
transformation and a mini-specification for each data
transformation, and a data dictionary.

Once a COBRA specification exists, CODARTS
provides four steps for generating a concurrent design:
1) Task Structuring, 2) Task Interface Definition, 3)
Module Structuring, and 4) Task and Module

Integration.  First, CODARTS task structuring criteria assist
a designer in examining a COBRA specification to identify
concurrent tasks.  The task structuring criteria, consisting of a
set of heuristics derived from experience obtained in the
design of concurrent systems, can be grouped into four
categories:  input/output task structuring criteria, internal task
structuring criteria, task cohesion criteria, and task priority
criteria.  In a given design, a task may exhibit several criteria
and many tasks may exhibit the same criteria.

The input/output and internal task structuring criteria
identify tasks based upon how and when a task is activated:
periodically based on the need to poll a device or to perform
a calculation; asynchronously based on an external device
interrupt or on an internal event.  The task cohesion criteria
help a designer to identify COBRA objects and functions that
can be combined together within the same task, e.g., because
a set of operations:  must be performed sequentially
(sequential cohesion); can be performed with the same period
or with a harmonic period (temporal cohesion); or perform a
set of closely related functions (functional cohesion).  The
task priority criteria prevent a designer from combining tasks
that might need to execute at substantially differing priorities.

As a second step, CODARTS provides guidelines for
defining inter-task interfaces.  Once tasks are defined, data
and event flows from a COBRA specification can be mapped
to inter-task signals or to tightly-coupled or loosely-coupled
messages, depending on the synchronization requirements
between specific pairs of tasks.

As a third step, CODARTS includes criteria, based on
information hiding, to help a designer identify modules from
the objects and functions in a COBRA specification.  In
general, the CODARTS module structuring criteria form
modules to hide the details of: device characteristics, data
structures, state-transition diagrams, and algorithms.

As a fourth step, once both the task and module views of
a concurrent design exist, CODARTS provides guidelines to
help a designer relate the independent views into a single,
consistent design.  Each task represents a separate thread of
control, activated by some event: either an interrupt, a timer,
an internal signal, or a message arrival.  Each module
provides operations that can be accessed by the tasks in a
design.  CODARTS helps a designer to establish the control
flow from events to tasks and then on to operations within
modules.

4.0  A Knowledge-based Approach To Automate
CODARTS

The CODARTS design method, including COBRA,
consists of design knowledge that can be encoded to form the
basis for an automated designer’s assistant.  A separate
reference provides  a complete description of a
knowledge-based approach to automate CODARTS. [11]  An
overview of the approach appears in the following
subsections.
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4.1 Conceptual View.  Figure 1 presents a
conceptual view of the proposed approach.  The major
components include meta-knowledge bases, design
knowledge bases, meta-models, and support knowledge
bases.  The meta-knowledge bases control the design
process and interactions with the designer.  The design
process meta-knowledge enforces ordering constraints
among the steps within the CODARTS method.  The
user-interface meta-knowledge provides the designer a
set of commands to access various design operations.
The design knowledge bases encode the means to
analyze specifications (specification analysis, inference,
and elicitation knowledge) and to generate designs
(design generation knowledge).  Together, the three
meta-models define the semantic concepts and semantic
relationships that can be reasoned about when generating
a design.  In essence, the specification meta-model
enables the modeling of models of real-time problems,
the design meta-model allows the modeling of models of
concurrent designs, and the target environment
description meta-model allows salient characteristics of
target environments to be described  The support
knowledge bases encode specific commands for
allowing a designer to query instances of a specification,
design, or target environment description, or to describe

a new target environment.  The remaining three components,
shown in Figure 1 as data repositories, represent libraries
containing instances of specifications, designs, and target
environment descriptions.  The three most interesting
components, shaded in Figure 1, bear further elaboration.

4.2  Specification Meta-Model.  The specification
meta-model represents the symbols from RTSA and the
semantic concepts from COBRA using: 1) a concept
hierarchy, where each concept embodies an optional set of
axioms, 2) concept classification rules, deployed in an
inference network, and 3) logic to elicit missing information.
The concept hierarchy establishes is-a relationships among
the various semantic concepts that can be represented using
RTSA and COBRA.  Figure 2 depicts a slice through the
concept hierarchy from the most general concept,
Specification Element, to a leaf concept, Periodic Device
Input Object.

Within the concept hierarchy, each concept can be
required to satisfy  axioms; each concept must also satisfy all
 axioms along all is-a paths leading to that concept.  Figure 2
shows concept inheritance with a directed arc pointing from a
child concept to its parent concept(s).  For each concept,
Figure 2 shows the names of the associated axiom(s) in a
rectangle connected to the concept using a bi-directional
arrow.  Dashed, directed arcs connect the axiom rectangles to
illustrate that axioms are inherited in accordance with the
concept hierarchy.  The concept Periodic Device Input
Object, even though it contains no axioms of its own, must
satisfy twelve axioms based on inheritance.  Similar groups
of axioms can be composed for any concept in the
specification meta-model.  The group of axioms that apply to
a given concept in the specification meta-model comprise a
formal definition for instances of the given concept; thus, any
instance that satisfies the applicable axioms for that concept
is a valid instance of the concept.

Given a specification expressed using only the symbols
of RTSA, the  axioms provide the basis for a set of rules that
allow semantic concepts from COBRA to be classified within
the specification meta-model.  Figure 3 illustrates a
four-stage inference network composed of
concept-classification rules.  Stage one of the network, the
Arc Classification stage, attempts to fully classify all arcs
from the specification, also classifying Terminators and
Transformations to the extent necessary to classify the arcs.
Stage two of the network, Transformation Classification,
attempts to fully classify all transformations from the
specification.  The Transformation Classification stage
accepts the partial classifications from stage one and
produces thirteen additional full classifications, as listed in
the figure, and two partial classifications.  Stage three,
Stimulus-Response Classification, resolves the classification
of each data flow from the specification that could not be
classified during Arc Classification.  Stage four,
Ambiguous-Function Classification, yields the remaining full
classifications.  Where the classification rules cannot
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distinguish among concepts a human analyst is
consulted.  Figure 3 lists all leaf-level concepts from the
specification meta-model; Mills provides a more
complete treatment. [11]

4.3  Design Meta-Model.  In addition to reasoning
about specifications, a designer must also reason about
the state of the evolving, concurrent design.  The design
meta-model allows an automated tool to simulate a
designer’s semantic view of concurrent designs.  The
design meta-model consists of 1) an E-R Model of
design entities and relationships, 2) constraints on
traceability between elements of a specification and
elements of a design, 3) constraints among relationships
within the design, 4)  constraints about target
environments, and 5) design guidelines.

Figure 4 illustrates the entities and associated attributes
that compose the design meta-model, shows the inheritance
relationships among those entities, and also depicts two key
relationships in which all design entities participate.  Every
entity within the design meta-model  is a Design Element that
can Trace To/From one or more Specification Elements from
the specification meta-model; however, certain constraints
restrict this relationship to only those that make sense.  For
example, a Transformation on the specification can lead to a
Task or an IHM (information hiding module) but not to a
Message.  The E-R diagram does not depict these specific
constraints.  Every Design Element can also Track each
Decision made about it; thus, an automated tool can capture
design rationale.  The remainder of the entities in Figure 4
define the semantic elements used to describe concurrent
designs.

Aside from the inheritance relationships and the
relationships named Tracks and Traces To/From depicted in
Figure 4, the design meta-model includes a number of
additional relationships, as shown in Figure 5.  These
additional relationships increase the richness and complexity
of the design meta-model.  Each relationship in Figure 5
should be understood to be bi-directional, including both the
relationship as shown and its inverse.  For the most part, the
relationships shown in Figure 5 can be read intuitively.  For
example, a Task can Read and Write Data, can Generate and
Accept an Event, can Send and Receive a Message, can
Invoke an Operation, and so on.  While Figure 5 depicts
cardinality constraints, more complex constraints do not
appear on the E-R diagram.  For example, each Message
entity in a design, where that Message entity is not carried
within another Message entity,  must be sent and received by
one, and only one, task.  Complex constraints such as these
are represented as query specifications that must hold for
valid instances of the design meta-model.  Constraints on
target environments, such as whether priority message
queues are supported, and design guidelines, such as the
threshold for task inversion, can be represented
independently from the constraints on instances of the
design meta-model.

4.4 Design-Generation Knowledge.  Using the semantic
concepts represented in the specification and design
meta-models, a designer can apply various heuristics from
the CODARTS design method to produce a concurrent
design from a COBRA specification.  To facilitate
automation of the designer’s decision-making, CODARTS
heuristics can be encoded into a knowledge-base that
includes a partition for each of the four CODARTS design
steps (see section 3):  Task Structuring, Task Interface
Definition, Module Structuring, and Task and Module
Integration.  Each knowledge partition consists of a sequence
of decision-making processes, where each process embodies
a set of design rules that encode relevant CODARTS
heuristics.
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To illustrate the form and effect of the design rules,
some examples might prove useful.  Figure 6(a) shows a
fragment from a COBRA specification for an automobile
cruise control and monitoring system.  (A complete
treatment of the entire specification appears elsewhere.
[11])  Figure 6(c) gives an example design rule that
creates a task based upon the CODARTS criterion for
identifying periodic device input/output tasks.  When
applied to the COBRA fragment in Figure 6(a) the rule
in Figure 6(c) produces the CODARTS design fragment
shown in Figure 6(b).   Due to previous execution of the
classification rules (see Figure 3), the rule shown in
Figure 6(c) recognizes the Brake transformation as an
instance of a Periodic Device Interface Object,
specifically a Periodic Device Input Object.

Figure 7(a) shows another fragment from the same
COBRA specification.  Based on a CODARTS criterion
for identifying data-abstraction modules, the design rule
in Figure 7(c) creates the CODARTS design fragment
shown as Figure 7(b).  

Figure 8 illustrates a design rule that examines both
the specification and the evolving design.  Figure 8(a)
shows a specification fragment representing an Interface

Object that receives an Interrupt.  First, the design rule in
Figure 8(c) recognizes that an existing task, shown in Figure
8(b), Traces From the Interface Object in Figure 8(a).
Subsequently, the design rule allocates an External Event for
the existing task, based on the Interrupt in 8(a).  

Figure 9 illustrates a rule that logically places a
state-transition module within a particular task.  Such logical
placement denotes that the state-transition module is
executed only within the thread of control of the containing
task.  Shared modules are placed logically outside of any
particular task.  The rule shown in 9(c) recognizes cases,
such as the specification and design fragments given in 9(a)
and 9(b), respectively, where a task and state-transition
module both result from the same Control Object; and, thus,
the state-transition module is invoked only by the identified
task.

5.0  An Automated Designer’s Assistant

The knowledge described in the preceding sections was
mapped onto various knowledge representation techniques
provided by an expert-system shell, CLIPS Version 6.0 [12],
to produce a COncurrent Designer’s Assistant (CODA),
which  was then applied to four real-time problems that often
appear in the literature:  an automobile cruise control and
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monitoring system, a robot controller, an elevator
control system, and a remote temperature sensor [11].
For each problem, CODA analyzed a specification and
then generated one or more concurrent designs.  

During analyses, CODA classified, automatically,
81% of the specification elements, while 5%, were data
stores, which are directly representable using  RTSA
notation.  The  remaining   14% were classified after
interaction between CODA and a designer  In 8% of the
cases CODA asked the designer whether a terminator
represented a device, external subsystem, or user role.
The remaining classification decisions where CODA
required help split between two categories: 2% where
CODA made a tentative classification that the designer
had to confirm or override and 4% where CODA
required additional information from the designer in
order to make a classification.

During design generation,  CODA made 97%, of the
decisions without consulting a designer.  In the instances
where CODA did consult a designer, half involved
decisions about synchronization requirements
surrounding messages exchanged between tasks, 36%
involved decisions about how to allocate a node from a
specification among two or more tasks or modules,  and
the rest required judgments about design optimizations..
Where an inexperienced designer cannot provide such
guidance, CODA takes default decisions and still
generates a design.

6.0  Conclusions

Advances in knowledge engineering hold potential
for effective automation of software design methods.
This paper presented a knowledge-based approach,
integrating semantic data modeling with production
rules, for automating CODARTS, a software design
method for concurrent and real-time systems.  The
approach leads directly to an automated designer’s
assistant, CODA, that was applied to generate ten
designs for four real-time problems.  CODA compares
favorably with other approaches for automating software
design methods.
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